Pow(x,n)
一、题目
50. Pow(x, n)
实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。
示例 1:
输入:x = 2.00000, n = 10
输出:1024.00000
示例 2:
输入:x = 2.10000, n = 3
输出:9.26100
示例 3:
输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25
提示:
-100.0 < x < 100.0
-231 <= n <= 231-1
n 是一个整数
- 要么
x 不为零,要么 n > 0 。
-104 <= xn <= 104
二、题解
题解一(照着用例写代码🤣🤣)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| public static double myPow(double x, int n) { if (x == 0) { return 0; } if (x == 1 || x == -1) { if (n % 2 == 0) { return 1; } else { return x; } } if (n == -2147483648) { return 0; } double temp = Math.abs(n); double result = 1; while (temp > 0) { result *= x; temp--; } if (n > 0) { return result; } else { return 1 / result; } }
|

题解二(Math方法,API调用工程师)
1 2 3
| public static double myPow2(double x, int n) { return Math.pow(x, n); }
|

题解三(快速幂 + 递归)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
| class Solution { public double myPow(double x, int n) { long N = n; return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N); }
public double quickMul(double x, long N) { if (N == 0) { return 1.0; } double y = quickMul(x, N / 2); return N % 2 == 0 ? y * y : y * y * x; } }
|
题解四(快速幂 + 迭代)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
| class Solution { public double myPow(double x, int n) { long N = n; return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N); }
public double quickMul(double x, long N) { double ans = 1.0; double x_contribute = x; while (N > 0) { if (N % 2 == 1) { ans *= x_contribute; } x_contribute *= x_contribute; N /= 2; } return ans; } }
|
三、总结
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
| package com.loltoulan.other;
public class MyPow {
public static void main(String[] args) { double pow = myPow(-2.00000, 10); System.out.println(pow); }
public static double myPow(double x, int n) {
if (x == 0) { return 0; } if (x == 1 || x == -1) { if (n % 2 == 0) { return 1; }else { return x; } } if (n == -2147483648) { return 0; } double temp = Math.abs(n); double result = 1; while (temp > 0) { result *= x; temp--; } if (n > 0) { return result; } else { return 1 / result; } }
public static double myPow2(double x, int n) { return Math.pow(x, n); }
public static double myPow1(double x, int n) { return (long)n >= 0 ? quickMul1(x, n) : 1.0 / quickMul1(x, -(long)n); }
public static double quickMul1(double x, long N) { if (N == 0) { return 1.0; } double y = quickMul(x, N / 2); return N % 2 == 0 ? y * y : y * y * x; }
public static double myPow3(double x, int n) { long N = n; return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N); }
public static double quickMul(double x, long N) { double ans = 1.0; double x_contribute = x; while (N > 0) { if (N % 2 == 1) { ans *= x_contribute; } x_contribute *= x_contribute; N /= 2; } return ans; }
}
|