完全二叉树的节点个数

一、题目

222. 完全二叉树的节点个数

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例 1:

img

输入:root = [1,2,3,4,5,6]
输出:6

示例 2:

输入:root = []
输出:0

示例 3:

输入:root = [1]
输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 104]
  • 0 <= Node.val <= 5 * 104
  • 题目数据保证输入的树是 完全二叉树

进阶:遍历树来统计节点是一种时间复杂度为 O(n) 的简单解决方案。你可以设计一个更快的算法吗?

题解

题解一(递归)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {

int count = 0;

public int countNodes(TreeNode root) {
if (root == null) {
return 0;
}
count++;
if (root.right != null) {
countNodes(root.right);
}
if (root.left != null) {
countNodes(root.left);
}
return count;
}
}

image-20241213170114309

三、总结

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
package com.loltoulan.binary_tree;

public class CountNodes {

public static void main(String[] args) {
CountNodes countNodes = new CountNodes();
int result = countNodes.countNodes(TreeNode.createTree());
System.out.println(result);
}

int count = 0;

public int countNodes(TreeNode root) {
if (root == null) {
return count;
}
count++;
if (root.right != null) {
countNodes(root.right);
}
if (root.left != null) {
countNodes(root.left);
}
return count;
}

public static int countNodes1(TreeNode root) {
if (root == null) {
return 0;
}
if (root.left == null && root.right == null) {
return 1;
}
StringBuilder sb = new StringBuilder();
return preTraversalRecursion(root, sb).split(",").length;
}

public static String preTraversalRecursion(TreeNode root,StringBuilder sb) {
if (root == null) {
return sb.toString();
}
sb.append(root.val).append(",");
preTraversalRecursion(root.left, sb);
preTraversalRecursion(root.right, sb);
return sb.toString();
}
}